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1 Task Description

Based on the Task 4, the polar power-voltage formulation is selected as the
most promise for quick and robust solutions to the ACOPF problems and to
be investigated to improve the model. The task is implemented with the three
solvers (KNITRO, CONOPT, IPOPTH) as chosen in the Task 4. This model
analysis is undertaken with three data sets (IEEE 118 bus, Polish 3375 and
Winter RTO data sets).

2 Model Analysis and Improvement

2.1 Notation

1. ic=*

Initial condition for ACOPF problems and * refers to options to choose a
different starting point.

2. Time : CPU time to solve ACOPF problems.

• First : CPU time from generating starting points to a solution

• Start : CPU time from starting points to a solution

3. O.V : Optimal objective value.

4. M.S : Model Status.

5. S.S : Solver Status.

2.2 Attempt for model improvement

1. Add different initial conditions for ACOPF problems

• ic=7: [DCLoss] Real power and voltage angle values are initialized
using a DCOPF model with line loss approximation (--lineloss=
1.055). Voltage magnitudes are initialized at 1.0. Reactive power
is initialized using relevant equations from the AC transmission line

1



model (applied to each line separately) and the initialized voltage
magnitude and voltage angle values.

• ic=8: [Matpower] Use voltage magnitude, voltage angle, real power,
and reactive power values given in Matpower solutions (if available),
but it is not used for this task.

• ic=9: [inputFile] Use voltage magnitude, voltage angle, real power,
and reactive power values given in the GDX file, but it is not used
for this task.

2. Modify initial guesses

• All initial conditions that are used for task 4 except for ic=2 initialize
line power flows using initialized voltage anlges and magnitudes as
well.

• ic=6+ : Discard the objective function which minimzes the loss of
the system for the Q-subproblem.

• ic=1+,3+ : Voltage angles are set to zero for ic=1,3 where voltage
angle variables are initialized using random draw between −π and π.

2.3 Assessement of the ACOPF solution

Since IPOPTH is the only solver able to handle the D-curve constraint, CONOPT
and KNTRO do not use the D-curve constraint for all test case. The Winter
RTO is very large data set thus it is presented separately.

POLAR

TIME
Solver:

IPOPTH
First Start

O.V M.S S.S

ic=0 1sec 1sec 129.66K$
Normal

Completion

Locally

Optimal

ic=1+ 1sec 1sec 129.66K$
Normal

Completion

Locally

Optimal

ic=2 0.8sec 0.8sec 129.66K$
Normal

Completion

Locally

Optimal

ic=3+ 1sec 1sec 129.66K$
Normal

Completion

Locally

Optimal

ic=4 2sec 1.5sec 129.66K$
Normal

Completion

Locally

Optimal

ic=5 1.5sec 1sec 129.66K$
Normal

Completion

Locally

Optimal

ic=6+ 3sec 1sec 129.66K$
Normal

Completion

Locally

Optimal

case118

ic=7 1.5sec 1sec 129.66K$
Normal

Completion

Locally

Optimal

POLAR

TIME
Solver:

IPOPTH
First Start

O.V M.S S.S

ic=0 10sec 10sec 7.4099M$
Normal

Completion

Locally

Optimal

ic=1+ 1min20sec 1min20sec 7.4099M$
Normal

Completion

Locally

Optimal

ic=2 9.5sec 9.5sec 7.4099M$
Normal

Completion

Locally

Optimal

ic=3+ 35sec 35sec 7.4099M$
Normal C

ompletion

Locally

Optimal

ic=4 15sec 11.5sec 7.4099M$
Normal

Completion

Locally

Optimal

ic=5 14sec 10.5sec 7.4099M$
Normal

Completion

Locally

Optimal

ic=6+ infeas infeas infeas
Infeasibility

in the decoupled ACOPF

case3375

ic=7 15sec 11sec 7.4099M$
Normal

Completion

Locally

Optimal

POLAR

TIME

Solver:

IPOPTH

First Start

O.V

ic=0 11sec 11sec 7.4110M$

ic=1+ 3min40sec 3min40sec 7.4110M$

ic=2 35sec 35sec 7.4110M$

ic=3+ 17sec 17sec 7.4110M$

ic=4 20sec 16sec 7.4110M$

ic=5 22.5sec 18.5sec 7.4110M$

ic=6+ infeas infeas infeas

case3375wp

(with the D-curve)

ic=7 19.5sec 11sec 7.4110M$

Table 1: ACOPF solution characteristic with IPOPTH solver
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POLAR

TIME
Solver:

CONOPT
First Start

O.V M.S S.S

ic=0 1sec 1sec 129.66K$ Normal

Completion

Locally

Optimal

ic=1+ 0.9sec 0.9sec 129.66K$ Normal

Completion

Locally

Optimal

ic=2 1.5sec 1.5sec 129.66K$ Normal

Completion

Locally

Optimal

ic=3+ 1.4sec 1.4sec 129.66K$ Normal C

ompletion

Locally

Optimal

ic=4 2sec 1.5sec 129.66K$ Normal

Completion

Locally

Optimal

ic=5 2.3sec 1.8sec 129.66K$ Normal

Completion

Locally

Optimal

ic=6+ 3.5sec 1.5sec 129.66K$ Normal

Completion

Locally

Optimal

case118

ic=7 1.7sec 1sec 129.66K$ Normal

Completion

Locally

Optimal

POLAR

TIME
Solver:

CONOPT
First Start

O.V M.S S.S

ic=0 12min 12min 7.4099M$ Normal

Completion

Locally

Optimal

ic=1+ 6min30sec 6min30sec 7.4099M$ Normal

Completion

Locally

Optimal

ic=2 12min 12min 7.4099M$ Normal

Completion

Locally

Optimal

ic=3+ 4min 4min 7.4099M$ Normal C

ompletion

Locally

Optimal

ic=4 1min35sec 1min30sec 7.4099M$ Normal

Completion

Locally

Optimal

ic=5 infeas infeas infeas
Normal

Completion

Locally

Infeasible

ic=6+ infeas infeas 7.4099M$ Infeasibility

in the decoupled ACOPF

case3375wp

ic=7 1min51sec 1min47sec 7.4099M$ Normal

Completion

Locally

Optimal

Table 2: ACOPF solution characteristic with CONOPT solver

POLAR

TIME
Solver:

KNITRO
First Start

O.V M.S S.S

ic=0 0.8sec 0.8sec 129.66K$ Normal

Completion

Locally

Optimal

ic=1+ 0.8sec 0.8sec 129.66K$ Normal

Completion

Locally

Optimal

ic=2 0.7sec 0.7sec 129.66K$ Normal

Completion

Locally

Optimal

ic=3+ 1.5sec 1sec 129.66K$ Normal C

ompletion

Locally

Optimal

ic=4 1.5sec 1sec 129.66K$ Normal

Completion

Locally

Optimal

ic=5 1.7sec 1.2sec 129.66K$ Normal

Completion

Locally

Optimal

ic=6+ 3.2sec 1sec 129.66K$ Normal

Completion

Locally

Optimal

case118

ic=7 1.8sec 1.2sec 129.66K$ Normal

Completion

Locally

Optimal

POLAR

TIME
Solver:

KNITRO
First Start

O.V M.S S.S

ic=0 10sec 10sec 7.4099M$ Normal

Completion

Locally

Optimal

ic=1+ 3min10sec 3min10sec 7.4099M$ Normal

Completion

Locally

Infeasible

ic=2 12sec 12sec 7.4099M$ Normal

Completion

Locally

Optimal

ic=3+ 1min50sec 1min50sec 7.4099M$ Normal C

ompletion

Locally

Optimal

ic=4 18sec 13sec 7.4099M$ Normal

Completion

Locally

Optimal

ic=5 17sec 12sec 7.4099M$ Normal

Completion

Locally

Optimal

ic=6+ infeas infeas 7.4099M$ Infeasibility

in the decoupled ACOPF

case3375wp

ic=7 15sec 11sec 7.4099M$ Normal

Completion

Locally

Optimal

Table 3: ACOPF solution characteristic with KNITRO solver

• Observation

– CONOPT solver fails to obtain a feasible point with the D-curve
constraint for the case3375wp by saying that initial function value is
too large and so does KNITRO.

– IPOPTH solver is suited well for ACOPF problems by providing fast
and robust convergence to an optimal solution even with the D-curve
constraint.

– With modified initial condition ic=1+,3+, the improved performance
with more robust convergence is shown. However, the added initial
condition ic=7 shows no significant improvement.

– By combining the result of the Task 4, It is difficult to judge which
initial condition is the best for the ACOPF problem since they are
dependent on both the system and solver. Among modified initial
conditions, ic=0,2 show quite great performances in terms of the
CPU time including both (First, Start), and robust convergence
for all test case with IPOPTH and KNITRO.
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2.4 Winter RTO data

POLAR

TIME
Solver :

IPOPTH, KNITRO
First Start

O.V M.S S.S

ic=0 infeas infeas
Normal

Completion

Locally

Infeasible

ic=1+ infeas infeas
Normal

Completion

Locally

Infeasible

ic=2 infeas infeas
Normal

Completion

Locally

Infeasible

ic=3+ infeas infeas
Normal

Completion

Locally

Infeasible

ic=4 infeas infeas
Normal

Completion

Locally

Infeasible

ic=5 infeas infeas
Normal

Completion

Locally

Infeasible

ic=6+ infeas infeas
Infeasibility

in the decoupled ACOPF

Winter RTO

ic=7 infeas infeas
Normal

Completion

Locally

Infeasible

Table 4: ACOPF solution characteristic with Winter RTO

• Observation

– For the Winter RTO case, none of the initial conditions happen to
provide an optimal solution. This suggests that very large system
is a hard problem and good initial conditions would be necessary to
find a feasible point.

– Further investigaton, such as data/equation modifications or im-
proved ACOPF formulation, would be necessary to make this data
set more suitable for the ACOPF (Future work).

3 Conclusion

• Model

– Winter RTP data set is very large system and it is shown that the
ACOPF model with the polar power-voltage formulation is difficult
to solve it without given good starting points.

– It would be worthwhile to take a detailed inspection for the rectangu-
lar current-voltage formulation that was able to find a different local
solution(Future work).
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• Initial guess

– On the whole, ic=0,2 provide the fastest convergence for the ACOPF
with/without the D-curve constraint.

– Better choice of the voltage angle is required for the ic=1,3. The
more sophisticated way to choose voltage angles is to initialize the
difference of the voltage between −π3 and π

3 arbitrarily (Future work).

• Solver

– Based on the results above, IPOPTH is the most promising solver for
ACOPF problems among three solvers. It is faster and more robust
to find an optimal solution than other solvers.

– Modification to handle the D-curve constraint should be added for
CONOPT and KNITRO.

– It would be necessary for the Winter RTP data and improvement of
the model to use different option files(Future work).
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Appendix A: UC AC models

Similar to the SLP models, using gams option nlp=ipopth or nlp=knitro which
changes the NLP subsolver from the default CONOPT solver is recommended
it tends to reduce solution time. Table 5 compares solution times of the three
UC AC models in the model archive for the 6 RTS96 files (all of which provide
24 hour demand data), while Table 6 displays the objective function from those
models.

Case UC Polar UC Rect UC IV

rts96 winter wday 16.637s 36.347s Locally infeasible

rts96 winter wend 17.054s 35.363s Locally infeasible

rts96 summer wday 17.201s 36.672s Locally infeasible

rts96 summer wend 14.196s 38.787s Locally infeasible

rts96 spring wday 16.502s 39.645s Locally infeasible

rts96 spring wend 13.219s 55.203s Locally infeasible

Table 5: UC AC Performance times

Case UC Polar UC Rect UC IV

rts96 winter wday 8027942.8084 8027442.1786 Locally infeasible

rts96 winter wend 7348662.7043 7348163.7214 Locally infeasible

rts96 summer wday 8161451.9444 8160920.1585 Locally infeasible

rts96 summer wend 7514637.1255 7514138.2306 Locally infeasible

rts96 spring wday 7850012.3767 7849510.2250 Locally infeasible

rts96 spring wend 7332762.8914 7332294.0353 Locally infeasible

Table 6: UC AC Objective function values

While the polar formulation consistently performs better time-wise, the rect-
angular formulation occasionally returned a slightly improved solution 4 of 6
times. The IV formulation failed to return a solution and converged to a locally
infeasible point. The IV formulation was tested using nlp subsolvers knitro and
conopt with similar convergence problems.

Appendix B: Large scale solution finding

B.1 Improving initial conditions for large scale models

When considering large scale datasets in the AC models, regular solution prac-
tices may be insufficient in finding solutions. Large-scale AC models are much
harder, if not impossible to solve without good initial conditions. This section
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discusses the methodology used in solution finding for the large scale Summer
and Winter test cases. While the basic gist is outlined in Procedure 1, Sections
B.1.1 and B.1.2 provide further details about the process.

Procedure 1: Feasibility methodology

1 (P̃ , F̃P , θ̃, U)← Solve UC DC --lineloss=1.055

2 Loop until convergence

3 (P,Q, FP , FQ, θ, V )← Solve polar acopf(P̃ , F̃P , θ̃, U)
4 end

B.1.1 24 hour UC DC model

The first step is to first produce a reasonable generator commitment profile
that would span across the 24 hour planning period. The solution provided
by the unit commitment DC approximation model includes time dependent
constraints such as ramping, minimum up and down time, and the option
--lineloss=1.055 approximates line loss by increasing demand by 5.5%, which
is the average maximum estimate we see in small test cases. This avoids the
gargantuan task of solving a unit commitment AC model while still solving an
ACOPF model that realistically accounts for time dependency constraints from
period to period. Using the lineloss option allows us to account for potential
losses in the unit commitment model, and avoids overly “tight” initial condi-
tions. This simple change proved to be rather effective by providing much better
starting points for the active power generation variable P and unit commitment
profile U .

Given the complexity of the dataset, there were issues with numerical in-
accuracies in the 24 hour UC DC model, whereby the “integer solution” was
not within the tolerance of the “final solution”. This was further confirmed
by CPLEX options (MIPKappStats=2, quality=1) which provide information
on the conditioning of the matrices and numerical accuracy. To fix this, a
combination of CPLEX model options (numbericalemphasis=1, scaind=1,

mipemphasis=2), and manual scaling of parameters and variables where appro-
priate, were found to be useful at times. Different datasets and model options
required different combinations, a list of useful options is shown below.

Useful CPLEX options

• threads=#

• names=no

• quality=1

• mipkappastats=2
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• mipemphasis=2

Emphasis on optimality

• bardisplay=2

Additional printouts

• scaind=1

Aggressive scaling

• numericalemphasis=1

Numerical precision emphasis

B.1.2 Feasible AC solutions

The solution of the 24 hour UCDC model provides a unit commitment profile
that can be used in single time period ACOPF models, as well as starting points
for bus angles and active power. Finding feasibility in large scale ACOPF models
is very challenging, even with the improved DCOPF solutions that approximate
line loss. As such, multiple iterations of the polar acopf model may be needed in
order to find AC solutions. Tests with different solvers resulted in the conclusion
that a combination of different solvers was possibly needed for this task, and
the final solutions for Winter and Summer were obtained using both KNITRO
and CONOPT.

On the outset, KNITRO consistently performed better in finding feasible
solutions from the starting points provided in Section B.1.1. A closer look
at the solutions however revealed inconsistencies that could be attributed to
numerical accuracy issues. Specifically, the solution was usually comprised of
many small values, oftentimes < 1e−8. CONOPT on the other hand did not
fare well without good starting values for reactive power, but excelled over
KNITRO in providing reliable and more numerically accurate solutions. In
addition, CONOPT is able to take user provided starting points, so provided
with good initial conditions, CONOPT was generally found to be a good choice
for solution refinement.

Due to the general difficulty of the model however, there was no one size fits
all when it came to using CONOPT for solution refinement. Eliminating noisy
values (< 1e−8) from the KNITRO solution sometimes helped, but most of
the solutions were obtained using a combination of CONOPT options, as listed
below. Like in the UCDC case, the need for options varied based on dataset
and even timeperiod. The one consistent thread throughout however, was that
cases with high active demand (i.e. greater stress on the system) were typically
alot more difficult to solve, with the solvers encountering problems maintaining
feasibility during the solution process.

Useful CONOPT options

• LMMXSF=1

Method used to determine step in Phase 0. 1=method based on bending.
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• LMMXST=1

Method used to determine step length while tightening tolerances.

• RVHESS=15

Memory factor for Hessian generation

• lsanrm=t

Use steepest edge instead of steepest descent

• lsusdf=0

Flag for forcing defined variables into basis

• lstcrs=t

Triangular crashed turned on

• lslack=t

Use triangular crash procedure and select initial basis as the crash vari-
ables and slacks

Also helpful in finding feasible points is to solve the AC model with a simpli-
fied objective function, that is using options --obj=linear or --obj=0, which
solve the AC model with a simplified linear and 0 objective function respec-
tively. This implicitly encourages the solver to concentrate more on feasibility
than optimality. However, more research needs to be done to consider its effect
on the solution space
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